3v^3+55v^2-175v=

Simple and best practice solution for 3v^3+55v^2-175v= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3v^3+55v^2-175v= equation:


Simplifying
3v3 + 55v2 + -175v = 0

Reorder the terms:
-175v + 55v2 + 3v3 = 0

Solving
-175v + 55v2 + 3v3 = 0

Solving for variable 'v'.

Factor out the Greatest Common Factor (GCF), 'v'.
v(-175 + 55v + 3v2) = 0

Subproblem 1

Set the factor 'v' equal to zero and attempt to solve: Simplifying v = 0 Solving v = 0 Move all terms containing v to the left, all other terms to the right. Simplifying v = 0

Subproblem 2

Set the factor '(-175 + 55v + 3v2)' equal to zero and attempt to solve: Simplifying -175 + 55v + 3v2 = 0 Solving -175 + 55v + 3v2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -58.33333333 + 18.33333333v + v2 = 0 Move the constant term to the right: Add '58.33333333' to each side of the equation. -58.33333333 + 18.33333333v + 58.33333333 + v2 = 0 + 58.33333333 Reorder the terms: -58.33333333 + 58.33333333 + 18.33333333v + v2 = 0 + 58.33333333 Combine like terms: -58.33333333 + 58.33333333 = 0.00000000 0.00000000 + 18.33333333v + v2 = 0 + 58.33333333 18.33333333v + v2 = 0 + 58.33333333 Combine like terms: 0 + 58.33333333 = 58.33333333 18.33333333v + v2 = 58.33333333 The v term is 18.33333333v. Take half its coefficient (9.166666665). Square it (84.02777775) and add it to both sides. Add '84.02777775' to each side of the equation. 18.33333333v + 84.02777775 + v2 = 58.33333333 + 84.02777775 Reorder the terms: 84.02777775 + 18.33333333v + v2 = 58.33333333 + 84.02777775 Combine like terms: 58.33333333 + 84.02777775 = 142.36111108 84.02777775 + 18.33333333v + v2 = 142.36111108 Factor a perfect square on the left side: (v + 9.166666665)(v + 9.166666665) = 142.36111108 Calculate the square root of the right side: 11.931517551 Break this problem into two subproblems by setting (v + 9.166666665) equal to 11.931517551 and -11.931517551.

Subproblem 1

v + 9.166666665 = 11.931517551 Simplifying v + 9.166666665 = 11.931517551 Reorder the terms: 9.166666665 + v = 11.931517551 Solving 9.166666665 + v = 11.931517551 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-9.166666665' to each side of the equation. 9.166666665 + -9.166666665 + v = 11.931517551 + -9.166666665 Combine like terms: 9.166666665 + -9.166666665 = 0.000000000 0.000000000 + v = 11.931517551 + -9.166666665 v = 11.931517551 + -9.166666665 Combine like terms: 11.931517551 + -9.166666665 = 2.764850886 v = 2.764850886 Simplifying v = 2.764850886

Subproblem 2

v + 9.166666665 = -11.931517551 Simplifying v + 9.166666665 = -11.931517551 Reorder the terms: 9.166666665 + v = -11.931517551 Solving 9.166666665 + v = -11.931517551 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-9.166666665' to each side of the equation. 9.166666665 + -9.166666665 + v = -11.931517551 + -9.166666665 Combine like terms: 9.166666665 + -9.166666665 = 0.000000000 0.000000000 + v = -11.931517551 + -9.166666665 v = -11.931517551 + -9.166666665 Combine like terms: -11.931517551 + -9.166666665 = -21.098184216 v = -21.098184216 Simplifying v = -21.098184216

Solution

The solution to the problem is based on the solutions from the subproblems. v = {2.764850886, -21.098184216}

Solution

v = {0, 2.764850886, -21.098184216}

See similar equations:

| 1/(2.1x)-(1/x) | | 1/2-3x=2/3x+5 | | 0.5y-4=11 | | 2m(2m+5)-5(2m+5)= | | 7+.3x=1 | | 2(3a+1)=44 | | k/8=.5 | | 5(2+x)=2x+31 | | 3(w-6)-8=-2(-2w+6)-9w | | 0=x(x-7)(x+6) | | 3a(3a-7)+7(3a-7)= | | 2x+7x=-10 | | 2x+96=x+512 | | 9r-4r+8=8r-r | | 5+2(m-3)= | | 13/11=m/19 | | 0=4x^4-12x^3-72x^2 | | 2(a+4)-a(3-a)= | | (3x^2+8y)(3x^2-8y)= | | 6x^2-140=2x | | a(a+b)-a(a-b)= | | 0=(x-5)(x+4) | | 6x-14=8x-68 | | Y=-x^3+17 | | -3(12-4x)+8= | | 3/4x^(-1/4)-3/4x^(-3/4) | | 4N-7+3N=63 | | 0=-x^3+17 | | -6+5x-10=-x-7x+3 | | (x-2)3-(3-X)=24 | | 7y+10+3y+9= | | -6(9-9x+2x)+6= |

Equations solver categories